
 International Journal of Computer Trends and Technology Volume 72 Issue 5, 217-222, May 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I5P127 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Optimization with Interprocess Communication via

Channels - A CSP Approach

Priyanka Nawalramka

Staff Software Engineer, House Canary, Boulder, CO, USA.

Corresponding Author : priyanka.nawalramka@gmail.com

Received: 03 April 2024 Revised: 05 May 2024 Accepted: 15 May 2024 Published: 27 May 2024

Abstract - In production software development, when handling large-scale data, performance becomes an essential

consideration. Given the rate at which data is generated and consumed today in modern cloud based systems, it, in fact,

becomes an essential requirement. The choice of tools, algorithm design and programming patterns can all help in gaining as

much optimization as possible within an application. Concurrency plays a vital role in software and resource optimization.

Traditional concurrency models use locks with multithreading over shared memory as the synchronization primitive. The

Communicating Sequential Processes (CSP) model uses communication as the synchronization primitive. This article delves

briefly into the theory of CSP. This is followed by a discussion on how to query and process big chunks of data from a

database in an optimal manner using interprocess communication. The article also describes a case study using channels, an

interprocess communication technique that uses message passing (based on CSP) with the concurrency constructs of the Go

programming language.

Keywords - Channels, Communicating sequential processes, Concurrency, Data processing, Interprocess communication,

Optimization.

1. Introduction
In computer science, the desire for greater speed in

executing tasks led to the introduction of parallelism [1].

Concurrency is the useful mechanism of dividing a task into

smaller tasks that can be run independently and allowing

them to progress at practically the same time. Concurrency is

not the same as pure parallelism, where the different tasks

execute simultaneously (typically in a multiprocessor

system). An important feature of concurrent program

execution is that it gives rise to indeterminacy in the behavior

and outcome of a program.

The traditional concurrency model relies upon

synchronization via locks (mutex, semaphore, condition

variable, monitor, etc.) over a shared memory location. In

1978, C. A. R. Hoare introduced a model and formal

language for using communication as the synchronization

primitive.

Decades later today, memory based synchronization

remains the most popular choice in programming.

Nonetheless, the communication-based concurrency model

did find adoption in some well-known programming

languages, including Go, a newer language developed in the

last two decades. The language creators emphasize the

linguistic simplicity of the notation.

In the following sections, the concepts and notations of

CSP are discussed in brief. Then, a case study is presented,

including pseud code, which describes optimization methods

for a practical and common scenario of querying bulk data

from a database and processing them using interprocess

communication techniques based on the previously

referenced communication-based concurrency methodology.

2. Communicating Sequential Processes
Communicating Sequential Processes is a programming

language model first introduced by C. A. R. Hoare in 1978,

which described a parallel composition of communicating

sequential processing as a fundamental program structuring

method using input and output as basic primitives of

programming [1]. The paper described a model using

communication via strictly synchronous message passing as

the basic concurrency primitive and provided recipes for

solutions to several common programming problems, like

bounded buffer, dining philosophers, etc., using the proposed

model. In this version of CSP, messages were exchanged

between specific process identities versus any particular

middle entity, like a port number or a channel. The notation

for an input command was defined as:

< 𝑠𝑜𝑢𝑟𝑐𝑒_𝑝𝑟𝑜𝑐𝑒𝑠𝑠 >? < 𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒 >

http://www.internationaljournalssrg.org/
about:blank

Priyanka Nawalramka / IJCTT, 72(5), 217-222, 2024

218

Whereas an output command was defined as:

< 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑝𝑟𝑜𝑐𝑒𝑠𝑠 > ! < 𝑣𝑎𝑙𝑢𝑒 >

This initial concurrent programming model led to the

development of a formal mathematical model in the

following years. CSP, as known today, refers to this

mathematical model. The model uses process algebra to

define semantics for various processes and their interaction

with each other and with their environment. It describes

methods to consider indeterminacy within a concurrent

system. The model’s core principle lies in the fact that a

sequential composition of instructions can correctly represent

the parallel composition of subsystems. It conceptualizes the

idea of decomposing a computer system into subsystems

running concurrently and constantly interacting with one

another and, more importantly, with their common

environment [1].

2.1. Primitives and Operators

CSP defines an event to be the fundamental unit of a

process, and that all events are regarded as instantaneous and

indivisible. Furthermore, the behavior of any process up to

some moment in time can be recorded as a trace (the

sequence of all events that happened during and leading up to

that moment in time). The behavior and transitions of the

processes are described using these primitives and algebraic

operators. Operators are defined to represent interleaving

(completely independent) processes and hiding of events

(abstraction via making an event unobservable), among

others. A fundamental notation of CSP defines a system

engaging in event e and then behaving like process P using a

prefix:

𝑒−> 𝑃 (𝑒 𝑡ℎ𝑒𝑛 𝑃)

A deterministic choice allows for a process to evolve

into one or the other form based on an initial event. The

external environment is allowed to resolve the choice by

selecting the initial event.

𝑃 □ 𝑄

A nondeterministic choice is one in which the external

environment has no control over. Thus, abstraction within a

system can be achieved by deciding to “ignore or conceal”

the nondeterministic behavior non-relevant to the user. [1]

𝑃 ⊓ 𝑄

The communication between processes is described as

happening via a channel (synchronized) using message

passing, with buffering as an option.

2.2. Limitations

In his original paper [1], Hoare recognized the fact that

in the CSP model, processes have the possibility of ending

up in a deadlock state. This would happen when a group of

processes that are attempting to communicate with each other

never actually correspond, in effect being in a wait-forever

state.

Due to its performance overhead, CSP was only adopted

in a few programming languages early on, and the memory-

based concurrency models remained the prime method for

obtaining concurrency.

3. CSP implementation in Programming

Languages
The CSP model discussed was adopted early in

programming languages such as Ocamm and Erlang. Some

programming languages like Go (a modern programming

language developed at Google) provide higher level

communication-based concurrency primitives in addition to

the traditional memory based synchronization constructs.

Following the basic theory of CSP, which allows for the

“parallel composition of subsystems” to be correctly

represented via a “sequential composition of instructions” in

a system wherein the components interact with one another -

the result of a data race free Go program is deemed similar to

that of a system where all the “goroutines are multiplexed

onto a single processor” and hence run sequentially,

accounting for the interactions between them. This behavior

is technically termed as “DRF-SC (data race-free programs

execute in a sequentially consistent manner)” [5].

The concurrency primitives of Go mainly include

goroutines and channels. The shared memory based

constructs like mutex and condition variable

implementations are also present in the language as part of

the sync package. However, the language creators prefer the

use of channels over the other primitives.

3.1. Goroutines

Goroutines are green threads managed by the Go

language runtime. The runtime manages the lifecycle and

multiplexes the goroutines onto low-level operating system

threads. Direct OS (Operating System) threads are not

exposed by the language APIs (Application Programming

Interface). The goroutines can interact with one another and

establish a relative order for execution using various

synchronization mechanisms such as a communication-based

channel or memory based locks, like mutex.

3.2. Channels

Channels in Go are directly inspired by those mentioned

above: Communicating Sequential Processes (CSP) formal

language in computer science. It is an interprocess

communication technique based on message passing.

Messages can optionally be stored in a FIFO (First-In-First-

Out) buffer, and sends are blocked in Go when the buffer is

full. It follows the principle described in Hoare’s original

paper [1], which states that communicating input and output

commands must be synchronized, and a delay must be

Priyanka Nawalramka / IJCTT, 72(5), 217-222, 2024

219

introduced when one of them is ready before the other. The

delay ends when the other command either becomes ready to

process the message or is terminated. Input and output

commands in the previous statement are analogous to

receiving and sending on a channel.

Multiple channels can be chained together to create a

pipeline. Although Go’s channel implementation does not

implement the actor model in concurrent systems, it can be

simulated using this construct if desired.

According to the official Go memory model reference:

“the kth receive on a channel with capacity C is synchronized

before the k+Cth send from that channel completes” [5]. It

should be noted that this creates a perfect construct for

implementing a counting semaphore using buffered channels

in Go. The maximum and active semaphore counts can be

represented by the buffer size and current message count in

the channel, respectively. Sending to the channel indicates

acquiring the semaphore, and receiving from the channel is

analogous to releasing the semaphore. The same approach

can be generalized to limit concurrency as well. The idea of a

counting semaphore implementation using communication-

based concurrency is also mentioned in Hoare’s original

paper on CSP [1].

With this brief introduction to concurrency concepts, the

proceeding topics will cover the practical scenario of

handling large scale data in a software system. The following

discussion and examples demonstrate how to query and

process data of the order of tens or even hundreds of

thousands of records with efficient resource utilization using

interprocess communication. In order to keep the discussion

simple, all database interactions are in abstract form, while

the main emphasis lies on how the various processes

communicate with each other.

4. Case Study
An application relies on large amounts of data stored in

a database table and needs to query and process the data on a

daily basis. Examples may include a system that reads from a

daily record of Amazon book reviews or social media feeds

and performs sentiment analysis on each record. Loading the

entire dataset into memory is not practical due to its size.

Furthermore, the sentiment analysis process may involve

interaction with an external system, which implies significant

I/O (input/output) operations will occur.

5. Solution Brief
The problem of reading large datasets with limited

memory can be solved by iterating or paginating over the

dataset via a database cursor instead of a single load.

Furthermore, the task of fetching the records from the

database can be decoupled from the processing of those

records. As records are fetched iteratively, they must be

processed with as minimum resource usage as possible. This

can be achieved via grouping the records into batches,

separation of concerns by delegating processing logic to

another process or subtask and carrying out some or all of the

tasks concurrently. Lastly, all subtasks involved must

communicate and share data in a synchronized manner.

6. Abstractions
All mainstream languages provide connector libraries to

interact with major databases. Consider these API contracts

in order to interact with a database. DBRowsCursor is an

interface that spells out the API contracts in order to operate

on the results from a database query.

type DBRowsCursor interface {

 Close()

 Next()

 Scan(any) error

 Err() error

}

Result is an abstract data type to encapsulate a single record

of data inside a Go struct.

type Result struct { // contains fields mapping to database columns}

dbQuerier defines a function type, the implementation of

which should allow for querying a database table and

returning the resulting data, including any errors.

// the implementing function should know how to retrieve data from

a database

type dbQuerier func() (DBRowsCursor, error)

7. Fetching Data and Iterating Over the Result

Set
It is not uncommon to see practical implementations in

which a large request is made to the database, and the entire

result set is loaded into memory for processing. This

approach has limitations and can utilize too many resources

if careful attention is not paid. It will simply not work when

the result set in question is in the order of thousands or more.

So, instead, it is appropriate to request the data one row at a

time via a cursor. Consider a run query() pseudo function

which accepts these arguments:

● querier - a function that knows how to query a database

and returns a cursor to iterate over the results.
● resultC - a channel to which results will be sent.
● errC- a channel to which errors will be sent.

func runQuery(querier dbQuerier, resultC chan *Result, errC chan

error) {

 rows, err := querier()

 if err != nil {

 errC <- err

 return

 }

Priyanka Nawalramka / IJCTT, 72(5), 217-222, 2024

220

 defer rows.Close()

 for rows.Next() {

 r := Result{}

 if err := rows.Scan(&r); err != nil {

 errC <- err

 } else {

 resultC <- &r

 }

 }

 if err := rows.Err(); err != nil {

 errC <- err

 }

}
Several modern programming languages, including Go,

support at least some form of functional programming

paradigm. It can be achieved in Go using first-class

functions. Therefore, the runQuery implementation is

simplified by emphasizing result iteration by accepting the

querier function as an argument. It should be noted that the

driver implementation used to interact with the database must

provide the cursor mechanism to advance over the result set

iteratively. Results are sent over the resultC channel. Any

errors encountered are sent over the errC channel.

8. Interprocess Communication
Figure 1 illustrates the interaction between the various

processes within the application. The main thread drives the

interaction by calling the corresponding function to fetch the

data. It also creates goroutines and handles the processing of

the data as well as errors. The result set is processed in

batches for optimal performance. Finally, it ensures all tasks

run to completion by synchronizing and waiting for their

execution.

The processBigData() pseudo function performs the driver

functionalities of:

● Delegating tasks by creating goroutines.

● Facilitating the interprocess communication.

● Handling data processing in batches and errors.

const batchSize = 100

func processBigData() int64 {

 batch := make([]*Result, 0, batchSize)

 // make a buffered channel to receive results in batches

 batchC := make(chan *Result, batchSize)

 errC := make(chan error)

 var wg sync.WaitGroup

 wg.Add(2)

…

}

Two different goroutines are instantiated within this

function. Goroutine 1 listens for errors encountered over the

errC channel. The err, ok := <-errC multi-value receives

expression blocks until a message is available to consume. It

returns any error in the err variable when available. ok will

be set as false if the channel is closed, indicating no more

messages can be received over this channel, thus breaking

the infinite loop.

go func() { // goroutine 1

 defer wg.Done()

 for {

 err, ok := <-errC

 if !ok {

 return

 }

 // handle the error

 }}()

Goroutine 2 listens over batchC, a buffered channel to

receive database records as they are read. It maintains an in-

memory fixed size buffer and sends off the result batch to

process when it is full. Sends to a buffered channel are

blocked when the buffer is full and receives are blocked

when the buffer is empty (nothing to consume).

go func() { // goroutine 2

 defer wg.Done()

 for record := range batchC {

 batch = append(batch, record)

 if len(batch) == batchSize {

 if err := processBatch(batch); err !=

nil { // handle the error}

 batch = batch[:0]

 }

}}()

Instead of batch processing, a fan-out approach can also

be implemented by spinning off a worker goroutine.

As per the result received. The channel buffering would

provide synchronization and safety against overutilization of

resources by limiting the number of concurrent goroutines

since sends are blocked when the channel buffer is full.

The data is retrieved by calling the runQuery() function.

querierFn := func() (DBRowsCursor, error) { /* implements

dbQuerier */ }

 runQuery(querierFn, batchC, errC)

Once runQuery() completes execution after reading the entire

result set; the goroutines need to be signaled somehow that

no more messages will be sent.

close(batchC) // marker 1: signals goroutine 2 to exit

 close(errC) // marker 2: signals goroutine 1 to exit

 wg.Wait() // marker 3: wait for goroutines to exit

gracefully

Closing a channel is analogous to sending a signal to a

process in Go. At marker 1, channel batchC is closed in order

to signal goroutine 2 to exit. At marker 2, channel errC is

closed in order to signal goroutine 1 that no more messages

are available to send, hence exit. At marker 3, the execution

waits while the two goroutines complete the in-flight tasks

and gracefully exit.

Priyanka Nawalramka / IJCTT, 72(5), 217-222, 2024

221

Fig. 1 Illustration of interprocess communication

 Lastly, the last batch of unprocessed records is sent off for

processing.
// process last batch if not empty

 if len(batch) > 0 {

 if err := processBatch(batch); err != nil {

 // handle the error

 }}

9. Discussion
The case study described above addresses a common use

case in modern software systems. Dealing with vast amounts

of data has become increasingly popular, with applications

moving to cloud infrastructure and faster computation with

better hardware and new technologies. In light of these

advancements, a system must be designed for optimal

performance.

While applying distributed computing concepts and

adding more hardware allows for scalability, applications

must be designed with the goal of extracting optimal

performance from resources within a single system first. This

is where concurrency concepts are essential. A big task like

extracting and processing large amounts of data should be

split and organized into smaller subtasks. With the use of

concurrency principles, many of these tasks can be

progressed in parallel.

While the theory of CSP, introduced by Hoare, forms the

basis of communication-based concurrency, it is crucial to

know its limitations and the performance overhead involved.

CSP also does not allow for the assignment of priorities

between the concurrent processes involved. In the case study

discussed, several considerations were made to achieve

optimal performance:

• Since available memory is limited, all data was not

loaded into memory at once; instead an iterative

approach was taken by using a cursor.

• The task was split into subtasks by creating a main

driver thread and two worker threads to handle the data

and any errors in a decoupled manner.

• Data sharing was done via communication between all

threads involved in a synchronized manner using

channel based concurrency.

• Asynchronous progression of concurrent tasks was

allowed with message buffering.

• Resource usage was optimized, but overuse was limited

with the use of batching and limited buffer size.

• The state of all subtasks was carefully controlled by

signaling (avoiding deadlock) and waiting on the

graceful completion of all subtasks.

10. Conclusion
In closing notes, the article presented a demonstration of

how concurrency mechanisms can be leveraged to achieve

speed of execution and optimized resource usage within a

software system. The fact that the system is handling large

amounts of data or performing resource intensive tasks

becomes irrelevant if it is designed with careful consideration

and intelligent application of concurrency paradigms. The

theory of communicating sequential processes, discussed at

the beginning of the article, has been the primary influence

behind channel based concurrency in programming

languages like Go. Separation of concerns via concurrency

paired with synchronized message passing and buffering

allows concurrent tasks to progress simultaneously, thus

benefiting overall execution speed. An in-depth discussion of

goroutine 2 goroutine 1

main thread:

processBigData()

runQuery()

start end

resultC::buffer

ed chan errC::

chan

Priyanka Nawalramka / IJCTT, 72(5), 217-222, 2024

222

all the various concurrency paradigms is outside the scope of

this discussion. The practical scenario discussed in this

article provides insight into one of them - interprocess

communication with message passing via channels. The

application of the producer-consumer pattern is shown in the

interaction of a sender and receiver process via channels. A

message buffering process was demonstrated, facilitating the

asynchronous interaction between sender and receiver

processes. These concepts, when applied correctly, can vastly

enhance the performance of production applications. This

pattern has especially found usage in modern cloud based

applications dealing with large amounts of data with a low

desired latency.

References
[1] C.A.R. Hoare, “Communicating Sequential Processes,” Communications of the ACM, vol. 21, no. 8, pp. 666-677, 1985. [CrossRef]

[Google Scholar] [Publisher Link]

[2] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe, “A Theory of Communicating Sequential Processes,” Journal of the ACM, vol. 31, no.

3, pp. 560-599, 1984. [CrossRef] [Google Scholar] [Publisher Link]

[3] A.W. Roscoe, The Theory and Practice of Concurrency, Prentice-Hall, 1997. [Google Scholar] [Publisher Link]

[4] Range and Close, A Tour of Go. [Online]. Available: https://go.dev/tour/concurrency/4

[5] The Go Memory Model, 2022. [Online]. Available: https://go.dev/ref/mem

[6] Channel (Programming). [Online]. Available: https://en.wikipedia.org/wiki/Channel_(programming)

[7] Communicating Sequential Processes. [Online]. Available: https://en.wikipedia.org/wiki/Communicating_sequential_processes

[8] Actor Model. [Online]. Available: https://en.wikipedia.org/wiki/Actor_model

[9] Sql Package - database/sql - Go Packages, Go Standard Library Documentation, Version go1.22.3., 2024. [Online]. Available:

https://pkg.go.dev/database/sql

https://doi.org/10.1145/359576.359585
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Communicating+Sequential+Processes&btnG=
https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/828.833
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Theory+of+Communicating+Sequential+Processes&btnG=
https://dl.acm.org/doi/pdf/10.1145/828.833
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Theory+and+Practice+of+Concurrency&btnG=
https://ora.ox.ac.uk/objects/uuid:d5a3ae86-626e-4387-94f1-070f522040aa/files/m9219fd48a7e63dfa0460127acd9ae573

